Switch to English Site

dotsdots

Analyze Datasets and Train ML Models using AutoML

描述

In the first course of the Practical Data Science Specialization, you will learn foundational concepts for exploratory data analysis (EDA), automated machine learning (AutoML), and text classification algorithms. With Amazon SageMaker Clarify and Amazon SageMaker Data Wrangler, you will analyze a dataset for statistical bias, transform the dataset into machine-readable features, and select the most important features to train a multi-class text classifier.

You will then perform automated machine learning (AutoML) to automatically train, tune, and deploy the best text-classification algorithm for the given dataset using Amazon SageMaker Autopilot. Next, you will work with Amazon SageMaker BlazingText, a highly optimized and scalable implementation of the popular FastText algorithm, to train a text classifier with very little code.阅读更多.

此资源由附属合作伙伴提供。 如果您支付培训费用,我们可能会赚取佣金来支持该网站。

按照数据工作岗位排列职业相关性

Analyze Datasets and Train ML Models using AutoML 中涵盖的技术和工具与 数据科学家 招聘广告中的要求最为相似。

相似度得分(满分 100)

学习顺序

Analyze Datasets and Train ML Models using AutoML is a part of 一 structured learning path.

Coursera
DeepLearning.AI

3 Courses 3 Months

Practical Data Science