This course introduces you to one of the main types of modeling families of supervised Machine Learning: Classification. You will learn how to train predictive models to classify categorical outcomes and how to use error metrics to compare across different models. The hands-on section of this course focuses on using best practices for classification, including train and test splits, and handling data sets with unbalanced classes.阅读更多.
此资源由附属合作伙伴提供。 如果您支付培训费用,我们可能会赚取佣金来支持该网站。
The techniques and tools covered in Supervised Machine Learning: Classification are most similar to the requirements found in 数据科学家 data science job advertisements.